2003年,他开始将硬邦邦的电子材料——如硅胶——置换成灵活、有机的材料,譬如二萘并-并二噻吩(DNTT),这种材质常用于制作纸币上的安全箔条。
本文引用地址:http://www.eepw.com.cn/article/201606/292388.htm
一开始,他选择用柔软且能与生物兼容的有机半导体来连接传感器,使之具备可检测压力和30-80度温度的能力。
然后,他把这些材料铺到“有源矩阵”方格网中(该材料常用于制作液晶显示屏),让每个传感器在网格中都有自己的一个确切坐标。
这就避免了缠结电线的需要。
之后他还想出了个绝妙的主意。
Someya的同事们都把传感器放置于刚性表面上,如超薄玻璃和钢箔上,而Someya的团队则选择了放到塑料薄膜上。
塑料不仅出乎意料地结实,而且还便宜,裹在机器人尖细的金属手指上也不会破。
这是世界上第一款超薄又柔韧的电子皮肤。
想象力的延展
尽管取得了这些成果,Someya的研究还面临着一个重大的难题——这电子皮肤不能伸展。
与此同时,美国的普林斯顿大学中,一组由席格德·瓦克纳教授带领的团队已经开始用橡胶作为表面材质制造可伸展的电子皮肤。
Someya 的团队很快进行了学习,并开始将他们的有机传感器网格用喷墨印刷的方式印到塑料薄膜上,然后将其压缩至预先拉伸开的橡胶基底上。
松开橡胶后,塑料薄膜便收缩回来,且具有纹路——就像真的皮肤一样——而再次拉伸橡胶的时候,薄膜也会伸展开来。
这一材质能够贴进机器人关节的凹槽里,就像把聚乙烯膜贴在它的手臂上一样。
他的电子网格可以被拉伸放大至250%,然后像揉纸团一样弄皱后,从一米高处扔下也不会破损。
这可能有违逻辑,但是塑料电子皮肤越薄,它们就越结实。
2005年到2013年之间,Someya 和他的团队不断制造越来越薄的塑料膜,最后完成的塑料膜厚度仅为1微米,是普通塑料包裹膜厚度的十分之一。
它的敏感度可与人类皮肤相提并论了。
Someya说:“此时,我们意识到,电子皮肤不应只限于用在机器人身上。我们开始将超薄塑料膜放到人类的皮肤表面。”
超灵敏人类将出现
2014年,Someya团队在一次手术中把一片电子皮肤放到一只老鼠的心脏上长达三小时。
这一智能皮肤良好呈现出了老鼠的心电图信号,能够检测到老鼠心脏缺陷的状态。
Someya说:“这一技术在未来可能会用于人类医学。”
使用电子皮肤给心脏带来的压力会比传统电极要小。
斯坦福大学化学工程系的鲍哲南教授正在开发能进行生物降解的材料,这意味着,放入人体中的电子皮肤将无需移除。
鲍教授说:“可移植的医学设备可以测量心电图、特定器官的大小和其随时间流逝而发生的变化。”
2015年,鲍的团队发布的论文称,超声波近距离传感器已经在机器人身上进行实验,以防止它们与物体发生排斥反应,而这一技术也可以用于检测光凭触摸无法诊断出的小型体内肿瘤。
今年早些时候,Someya的团队发布了一款可监测氧气含量的电子皮肤。
其指数可通过微电子元素以红、绿或蓝显示出来。
你手上的超薄电子皮肤能在运动状态下作为电子显示屏来使用。
它还能用于多种商业用途,例如播放媒介。
Someya的最终目标是,这样的电子皮肤能用在手术中,检测人体器官内的氧气含量。
不过,电子皮肤的另一用处则能够增强当今外科修复学的功能。
如果把智能皮肤安置于人的上臂,它就能检测脑波,然后把信号传达到假肢,让它完成相应的动作。
智能皮肤有着无限的可能性,不仅是在医学领域,它在游戏竞技和个人健康监测方面都有着极大的潜力。
超越药物
去年11月,Someya邀请Ichiro Amimori为他所完成的项目建立一个衍生公司。
2016年,在世界最大的科技论坛CES上,Amimori发布了一款用于虚拟现实游戏竞技中的动态感应套装。
这个套装在布料内安装了电路面板,内含可监测动作、呼吸和身体温度的传感器,它甚至可以机洗。
他的团队还开发出了适用于婴儿的动态感应套装,让父母们即便不在家也可以监测孩子的一举一动。
Amimori说:“现在,这些产品还处于模型阶段,还是有一点未来感的。但是,它正在变为现实。我们已经计划好了将Someya的科技带到现实世界的每一步。”
Someya说,自他的突破性发明问世以来,电子皮肤领域便热门起来了,为了使之可穿戴,全世界的各种团队都在研究如何攻破剩余的难题。
但是,他的科技梦想延伸得很远很广,现在又回到了他的起点——通过科技联结人类。
他说:“我们的终极目标,我们的梦想,就是通过充分利用软性电子科技让人类和机器人之间和谐共处。人类更了解机器人,机器人则更接近人类。”
上一页 [1] [2] 尾页